Partitioning a graph into alliance free sets
نویسندگان
چکیده
A strong defensive alliance in a graph G = (V, E) is a set of vertices A ⊆ V , for which every vertex v ∈ A has at least as many neighbors in A as in V − A. We call a partition A, B of vertices to be an alliance-free partition, if neither A nor B contains a strong defensive alliance as a subset. We prove that a connected graph G has an alliance-free partition exactly when G has a block that is other than an odd clique or an odd cycle.
منابع مشابه
Partitioning a graph into offensive k-alliances
A defensive k-alliance in a graph is a set S of vertices with the property that every vertex in S has at least k more neighbors in S than it has outside of S. A defensive k-alliance S is called global if it forms a dominating set. In this paper we study the problem of partitioning the vertex set of a graph into (global) defensive k-alliances. The (global) defensive k-alliance partition number o...
متن کاملMaximum Alliance-Free and Minimum Alliance-Cover Sets
A defensive k−alliance in a graph G = (V, E) is a set of vertices A ⊆ V such that for every vertex v ∈ A, the number of neighbors v has in A is at least k more than the number of neighbors it has in V −A (where k is the strength of defensive k−alliance). An offensive k−alliance is a set of vertices A ⊆ V such that for every vertex v ∈ ∂A, the number of neighbors v has in A is at least k more th...
متن کاملA Tight Bound on the Cardinalities of Maximum Alliance-Free and Minimum Alliance-Cover Sets
A defensive k-alliance in a graph G = (V, E) is a set of vertices A ⊆ V such that for every vertex v ∈ A, the number of neighbors v has in A is at least k more than the number of neighbors it has in V − A (k is a measure of the strength of alliance). In this paper, we deal with two types of sets associated with defensive k-alliances; maximum defensive k-alliance free and minimum defensive k-all...
متن کاملStrong Alliances in Graphs
For any simple connected graph $G=(V,E)$, a defensive alliance is a subset $S$ of $V$ satisfying the condition that every vertex $vin S$ has at most one more neighbour in $V-S$ than it has in $S$. The minimum cardinality of any defensive alliance in $G$ is called the alliance number of $G$, denoted $a(G)$. In this paper, we introduce a new type of alliance number called $k$-strong alliance numb...
متن کاملOn global (strong) defensive alliances in some product graphs
A defensive alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at most one moreneighbor outside of $S$ than it has inside of $S$. A defensive alliance $S$ is called global if it forms a dominating set. The global defensive alliance number of a graph $G$ is the minimum cardinality of a global defensive alliance in $G$. In this article we study the global ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009